
CrowdCL: Web-Based Volunteer Computing
with WebCL

Tommy MacWilliam
School of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts 02138

tmacwilliam@cs.harvard.edu

Cris Cecka
School of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts 02138

ccecka@seas.harvard.edu

Abstract—We present CrowdCL, an open-source framework
for the rapid development of volunteer computing and OpenCL
applications on the web. Drawing inspiration from existing GPU
libraries like PyCUDA, CrowdCL provides an abstraction layer
for WebCL aimed at reducing boilerplate and improving code
readability. CrowdCL also provides developers with a framework
to easily run computations in the background of a web page,
which allows developers to distribute computations across a
network of clients and aggregate results on a centralized server.
We compare the performance of CrowdCL against serial imple-
mentations in Javascript and Java across a variety of platforms.
Our benchmark results show strong promise for the web browser
as a high-performance distributed computing platform.

I. INTRODUCTION

Through volunteer computing, users can contribute oth-
erwise idle CPU cycles to solving computationally-intensive
problems. By distributing jobs across a large network of users,
volunteer computing projects can utilize more computational
power than would be feasible to gather locally due to cost
and space constraints. Typically, however, participation in a
volunteer computing project requires users to download and
install an additional package on their machine to run in the
background. However, the overhead associated with the instal-
lation process may dissuade some users from participating, and
users may forget to launch or inadvertently quit the background
process, which also lowers participation rates. In addition, the
cost of supporting a seemingly infinite set of achitectures and
configurations can be significant [7].

In this paper, we introduce CrowdCL, an open-source,
web-based, cross-platform, high-performance volunteer com-
puting framework. CrowdCL allows developers to write high-
performance web applications that can be executed as back-
ground processes within a web page. For example, as a user
browses a website, Javascript code that finds solutions to an
optimization problem can be executed by the web browser
without disrupting the user’s experience on the site. This avoids
the need for active installation on users’ computers and allows
developers to create and distribute cross-platform volunteer
computing applications that take advantage of more and more
ubiquitous hardware accelerators.

For this purpose, CrowdCL also provides simple and adapt-
able utilities to take advantage of GPU computing through
WebCL [3], a Javascript binding to OpenCL. To reduce the
complexity and boilerplate of traditional OpenCL programs,
we develop the KernelContext, a WebCL abstraction that

greatly simplifies the process of communicating with the GPU,
defining OpenCL programs, and launching device computa-
tions. Using both CrowdCL and KernelContext, developers can
rapidly write parallel and cross-platform programs that can be
distributed to and executed by a collection of volunteers.

Ultimately, the goals of CrowdCL are similar those of
existing volunteer computing projects. One such effort is Fold-
ing@home [7], which runs protein folding computations as
background processes on participants’ computers. The project
currently sustains more than 5 PetaFLOPS as a result of
the contributions of an estimated 400,000 clients. Similarly,
the BOINC project that powers SETI@home [5] has reached
hundreds of TeraFLOPS through the participation of 500,000
users. Like BOINC, CrowdCL seeks to provide a generalized
framework that can be used to solve a variety of computation
problems. While Folding@home and SETI@home run as
desktop applications, efforts such as Mechanical Turk [11]
have used the web as a platform for crowdsourcing. While
Mechanical Turk is aimed primarily at consumers, as users
can create or solve micro-tasks in exchange for payment,
CrowdCL instead targets developers who seek to distribute
GPU computations via embedded web applications.

In this paper, we will show that the CrowdCL frame-
work allows simplified development of distributed, OpenCL
accelerated applications. These applications computationally
outperform serial implementations in Javascript and Java on a
single machine, and can be embedded on any web page using
a single <script> tag in a page’s HTML source.

The main contributions of this paper are:

• We develop a PyCUDA-like abstraction layer for We-
bCL, called KernelContext, to ease the construction and
execution of OpenCL programs in an online Javascript
environment.

• We compare the performance of this abstraction layer
against other common cross-platform computing strate-
gies.

• Our implementation of a CrowdCL framework for dis-
tributing the web applications allows for trivial deploy-
ment of a high-performance web application.

We use the Thomson problem as a benchmark and demon-
stration of our framework. The Thomson problem is a nonlin-
ear optimization problem that is useful in many problems in bi-
ology, math, physics, and computer science. See Section IV-A.

Fig. 1. With the CrowdCL framework, developers can easily integrate
OpenCL code into Javascript in order to solve arbitrary computational prob-
lems via a distributed network of clients and collect results on a central server.

Let ωN = x1, . . . , xN denote a set of N distinct points in
S2 ⊂ R3. For real s > 0, the s-energy is given by

Es(ωN) =
∑

x,y∈ωN
x 6=y

1

|x− y|s
(1)

For given N , the Thomson problem is then to find

TN = inf
ωN

E2(ωN) (2)

Optimization procedures for the Thomson problem and related
problems are computationally intense as computing Es and
∂ωEs require O(N2) operations. For this purpose, we wish
to use hardware accelerators on the client to increase the
computational intensity.

II. KERNELCONTEXT

Within the CrowdCL project, the WebCL KernelCon-
text [2] is an open-source abstraction layer for WebCL, which
allows OpenCL code to be executed on the web via Javascript.
The KernelContext library consists of two components: the
core module and the utilities module. The KernelContext core
defines methods for compiling OpenCL kernels, reading and
writing GPU data, and launching kernels, while KernelContext
utilities include methods for dynamically constructing and
launching map/reduce kernels.

Kernels are first-class citizens in the KernelContext, and
our library’s API draws inspiration from existing frameworks.
This API closely resembles that of PyCUDA [12], a Python
framework for compiling and executing CUDA code. In par-
ticular, both PyCUDA and CrowdCL allow typed arrays to
be transferred to and from the GPU using a single method.
Furthermore, just as PyCUDA compiles CUDA source from
strings and returns Python functions that can be called with
appropriate parameters in order to launch kernels, CrowdCL
uses a proxy pattern in order to launch OpenCL kernels
compiled from Javascript strings via the same syntax used to
call Javascript functions.

A. KernelContext Core

The KernelContext Core provides an abstraction for basic
GPU operations. A connection to the GPU can be established
by creating a new KernelContext object, which will
manage all communication with the device. Data can be sent
to the GPU via the toGPU method, which takes as input an
array to send to the device and returns a handle to the data on
the GPU. This handle serves as a pointer to the data on the
GPU and can be used to reference GPU memory when passing
arguments to a kernel or transferring data from the device to
the host. To improve performance and give developers more
fine-grained control over the bytes that are transferred to the
device, KernelContext mandates the use of Javascript typed
arrays, such as Float32Array and Uint32Array, rather
than simply Array instances. Typed arrays can be accessed
using the same syntax as Array instances, though typed
arrays have a fixed size (and type), and not all Array methods
are available.

The KernelContext compile method compiles an
OpenCL program and returns a callable function. An OpenCL
program can be defined as a Javascript string, placed in a sep-
arate .js file, or contained within HTML via the <script
type="text/x-opencl"> tag. When the function re-
turned by the compile method is called, the kernel will be
launched on the GPU. This function is thus a proxy object
for the compiled OpenCL kernel, which allows an OpenCL
kernel to be launched using the same syntax for executing
Javascript function, which significantly reduces boilerplate
while improving readability. When calling the kernel proxy, the
first parameter must be an object that defines the global work
size and local work size for the kernel via keys named global
and local, respectively. Parameters to the kernel itself can
also be passed to a compiled function. Pointers to arrays are
represented by the handles returned by the toGPU method.
Scalar types can also be passed to kernels via instantiations of
Uint32, Float32, etc. See Code 1.

Data can be transferred from the device to the host via
the fromGPU method, which takes as input a handle to data
on the GPU obtained via a previous call to toGPU. In order
to improve performance, a pre-allocated typed array buffer
to be filled with data from the GPU may be passed as a
second parameter. If a second argument is not passed, then
the KernelContext will dynamically allocate a new typed array
buffer to store the GPU data and return it to the caller.

1 var data = new Uint32Array(10);
2
3 var ctx = new KernelContext;
4 var kernel = ctx.compile(source_str, ’fn_name’);
5
6 var d_data = ctx.toGPU(data);
7 kernel({local: 32, global: 32}, d_data);
8 ctx.fromGPU(d_data, data);

Code 1. The KernelContext can be used to send data to the GPU, compile
and launch a OpenCL program, and read data from the GPU.

The KernelContext utilizes OpenCL command queues by
lazily executing data transfer calls and kernel launches. For
example, toGPU and kernel evaluations will not be evaluated
until a call to fromGPU that depends on their execution
is called. Queuing methods reduces communication with the

device, resulting in higher performance for KernelContext
applications. Figure 1 demonstrates KernelContext usage by
sending data to the GPU, launching a kernel, and reading data
from the GPU.

B. KernelContext Utilities

The KernelContext utilities class, KernelUtils, builds
on the KernelContext core. Because many operations are com-
mon in parallel programs, KernelUtils provides methods
to dynamically generate kernels rather than writing their source
manually.

The map method will compile a new kernel object, transfer
necessary data to the GPU, launch the kernel, transfer the result
from the GPU, and return a typed array representing the result
of the map. Global and local work sizes will be determined
appropriately such that the mapping operation for each element
will be performed in a separate thread. This method takes at
least three parameters: a string containing a comma-separated
list of variable names, a string containing an OpenCL snippet
that represents the mapping operation, and one or more typed
arrays to use in the map. Code 2 uses the map method to add
1 to each element of a typed array in parallel on the GPU.

1 var ctx = new KernelContext;
2 var util = new KernelUtils(ctx);
3
4 var a1 = new Uint32Array(10);
5 var result = util.map(’x’, ’x[i] + 1’, a1);

Code 2. A kernel to add 1 to each element of the array a1 is generated,
compiled, and launched. Because the variable name x has been specified in the
first argument, x can be used in the second argument to refer to the Javascript
typed array a1 inside the mapping kernel source.

Like map, the reduce method will compile a new kernel
object, transfer necessary data to the GPU, launch the kernel,
transfer the result from the GPU, and return a scalar rep-
resenting the result of the reduction. The parallel reduce is
performed in two phases. First, the input array is partitioned
into groups based on the GPU’s local work size, and the
reduction is performed over each of those groups in parallel to
yield one scalar per group. In the second phase, the reduction is
performed over the remaining scalars to obtain a scalar result.
This method has two required parameters: a string containing
an OpenCL snippet that represents the reduction operation and
one typed array to reduce over. Code 3 uses the reduce
method to compute the sum and maximum value of a typed
array in parallel on the GPU.

1 var a2 = new Uint32Array(10);
2 var sum = util.reduce(’a + b’, a2);
3 var max = util.reduce(’(a > b) ? a : b’, a2);

Code 3. Kernels to compute the sum and maximum of the array a2 are
generated, compiled, and launched. In the first argument, the OpenCL variable
a represents the current value of the reduction accumulator, and the variable
b represents the next value to be reduced in the array.

As the map and reduce methods return the result of the
operation rather than a callable kernel, it may be desirable to
instead re-use a map or reduce kernel at a later point in a pro-
gram. In this case, the mapKernel and reductionKernel

methods, which return a proxy object that can be called to ex-
ecute the kernel rather than launching the kernel immediately,
can be used. See Code 4. Whereas map and reduce will
recompile and execute a new kernel each time, mapKernel
and reduceKernel return a re-usable kernel proxy, similar
in spirit to the KernelContext compile method.

1 var sum_kernel =
2 util.reduceKernel(Uint32Array, ’a + b’);
3 var max_kernel =
4 util.reduceKernel(Uint32Array, ’(a > b) ? a : b’);
5 var d_a2 = ctx.toGPU(a2);
6 var sum2 = sum_kernel(d_a2);
7 var max2 = max_kernel(d_a2);

Code 4. Alternative use of utility kernels. Precompile the reductions kernels to
be used repeatedly in the code later. Note the intuitive and easy-to-use interface
that avoids complexities in writing and using a reduce kernel: launching
with carefully chosen local and global thread group sizes, multiple kernel
invocations for large arrays, etc.

III. CROWDCL

While the KernelContext library creates an abstraction
layer for accessing the GPU via Javascript in the web browser,
CrowdCL [1] provides an open-source volunteer computing
framework. CrowdCL consists of a client and server compo-
nent. Using the CrowdCL client framework, developers can
write Javascript code to be run in the background of users’ web
browsers, and the results of those processes are collected using
the CrowdCL server application. Per Figure 1, developers can
use our framework to easily write OpenCL applications using
Javascript, distribute computations to web browser clients, and
aggregrate results on a server.

A. CrowdCLient

CrowdCLient, the CrowdCL client library, handles the
execution of arbitrary code in the background of a web
page. To use the CrowdCL framework, a developer first
creates a Javascript class that represents an instance of an
arbitrary computational problem to be solved using volunteer
computing. The constructor for the problem class can accept
any number of parameters and may also perform any logic
necessary to instantiate the problem instance. This class must,
at a minimum, also define a run method, which will be
executed in a loop in the background of a user’s web browser
by CrowdCL. The run method contains the logic needed to
obtain a single result or solution to the problem; in the context
of an optimization problem, for example, the run method
represents a single step in the solver.

An object that has defined at least a run method can
then be passed to the constructor of the CrowdCLient.
The CrowdCLient instance is the driver for the developer’s
problem class that will handle the execution of a problem’s
run method in the background; once a CrowdCLient has been
created, it will begin executing the problem’s run method.
The CrowdCLient will then send the results obtained by the
problem instance to the CrowdServer via an Ajax request.
If the problem instance defines a sync method, then this
behavior can be overridden.

The CrowdCLient constructor can take a number of param-
eters: id is a string representing a unique ID for the problem,

server is the URL of the CrowdCL server to which all
computation results will be sent, timeout is maximum delay
between consecutive calls of the run method, and stage is
the number of run results that will be cached locally before a
batch of results is sent to the CrowdCL server to be saved. A
callback to be executed after every iteration of the run method
can also be specified using the onResult key.

The CrowdCLient object also defines a number of events
that can be used to interact with the driver. The pause
method can be used to pause the execution of the run loop,
the resume method can be used to resume execution, and
the sleep method can be used to pause execution for a
fixed number of milliseconds. When the execution of the
run loop is interrupted by any of these events, the problem’s
interrupt method will be called (if it is defined), allowing
the problem developer to respond to driver events (i.e., to clean
up memory).

B. CrowdServer

The CrowdServer is a RESTful Node.js application respon-
sible for aggregating the results of users running CrowdCL
client code. By default, the CrowdServer uses MongoDB as
a data store, as a schema-less database is more conducive to
storing arbitrary data that may be posted by clients. However,
the server also includes a MySQL adapter if MongoDB is
unavailable. When using MySQL a column must exist in the
MySQL table for each key that is posted by a client.

The CrowdServer has API routes for saving new results
from clients as well as aggregating existing results. When a
CrowdCLient has a new result (or set of results), a POST
request containing a JSON object is sent to /result/:id,
where id is the unique ID for the problem specified in the
CrowdCLient constructor. This JSON object may contain an
arbitrary set of key/value pairs, allowing developers to save as
much data as desired from the problem instance. To view ex-
isting results, a GET request can be sent to /results/:id,
where id is again the unique ID for the problem. Each result
is also given a globally-unique identifier, and sending a GET
request to the route /result/:result_id can be used to
obtain a JSON representation of a single result.

In order to ensure fake data is not sent to and stored by
the CrowdServer, the developer of a problem can specify a
verify method. Given a single result from the data store,
this method returns true if the data fits the constraints of the
problem and false if the data has been fabricated by a malicious
user. In the event data is found to be invalid, it is automatically
removed from the data store. The verify method is securely
executed on the CrowdServer using the Node.js vm sandbox
in order to ensure validity.

IV. RESULTS

We use the Thomson problem, an optimization problem, to
benchmark our KernelContext and CrowdCL implementations.

A. Benchmark – Thomson Problem

The Thomson problem described in equation (2) remains
a subject of considerable interest from its proposal as the
“plum pudding” model of the atom by J.J. Thomson in the

early 20th century [16]. It has applications to such diverse
fields as condensed matter physics, especially crystallography,
materials science [13], [6], viral morphology [14], supra-
molecular chemistry, global positioning, encryption problems
in computer science [9], and even the design of golf balls.

The most straightforward solution to the Thomson places
N charges on the sphere and uses some optimization algorithm
to minimize the energy of the charges to find the solution. Of
course, such approach has been tried [15], [4] but in general
does not provide the actual minimum configuration because
there are many configurations that are a minimum of the energy
and among this many configurations we only seek the one
that gives the lowest energy. In fact, Erber and Hockney [10]
showed that the number of solutions to the Thomson problem
grows exponentially with the number of particles, and already
for number of particles N ≈ 100 there are thousands of
solutions. With so many solutions available, it becomes an
enormously expensive task to find the one that actually has
the lowest energy.

Because the Thomson problem is already associated with
online volunteer computing efforts [8] and its computation is
expensive, we use it as a proof-of-concept for the CrowdCL
distributed heterogeneous framework and as a benchmark for
the KernelContext library for WebCL.

The optimization algorithm used for the Thomson problem
is a steepest decent with heuristic step length. The steps of the
algorithm are then:

• Compute the gradient (force on each point x ∈ ωN),

G(ωN)[x] =
∑
y∈ωN
y 6=x

x− y

|x− y|3
. (3)

• Compute the heuristic step-length,

ds := f(ωN , G(ωN)). (4)

• Update all points in ωN ,

x := x+ ds ·G(ωN)[x]. (5)

• Renormalize all points to the sphere,

x :=
x

|x|
. (6)

Thus, this problem requires a custom N-body computa-
tion (3), mapping operations (5) (6), and a reduction op-
eration (4). The KernelContext core and utility libraries for
WebCL allow this algorithm to be written as an accelerated,
cross-platform web application very straightforwardly.

B. Performance and Comparisons

We compare the performance of our CrowdCL implemen-
tation with a comparable implementation in raw Javascript and
an optimized Java implementation on two different platforms.
Keeping in mind that the application can be run passively
in the background or actively in the foreground to augment
user experience and computational power and does not require
architecture dependent implementations or active user installa-
tion (in contrast to existing projects like Folding@home [7]),
we find that this compute model for large scale distributed
computation and data analysis shows strong promise.

512 1024 2048 4096 8192
0

2

4

·107

Number of particles, N

In
te

ra
ct

io
ns

pe
r

se
co

nd
Javascript
Opt Java
WebCL

Fig. 2. On a Macbook Air with Nvidia 320M GPU, CrowdCL outperforms
serial Javascript and optimized Java for N ≥ 1024.

Our CrowdCL implementation minimizes the transfer of
data between the host and device by performing all compu-
tations on the GPU. The energy (1) of a given configuration
of points as well as the forces (3) exerted on all points are
computed entirely on the GPU. Similarly, the placement of
points is updated on the device with each optimization step
so that data need not be transferred on each iteration of the
optimization.

We benchmark our implementation for 512 ≤ N ≤ 8192
on a machine that could be owned by a typical volunteer
computing user: a Macbook Air equipped with 1.86 GHz Intel
Core 2 Duo CPU and an NVIDIA 320M GPU. Our results are
shown in Figure 2. For N < 1024, serial implementations
in Javascript and Java outperformed CrowdCL due to the
overhead incurred by transferring data to and from the GPU
and the inability to saturate the compute device with work.
Because the number of operations increases as O(N2) while
the memory requirements increase as O(N), the CrowdCL
implementation is more efficient for larger values of N . For
all values of N Java (a compiled language) outperformed
Javascript (an interpreted language).

We also benchmark our implementation for 512 ≤ N ≤
16384 using a desktop computer equipped with a Intel Xeon
W3670 3.2GHz CPU and an NVIDIA Tesla K20 GPU. The
results are shown in Figure 3. Every implementation is nearly
an order of magnitude faster with the improved hardware. The
K20 GPU significantly improved the performance of the par-
allel implementation, such that our CrowdCL implementation
outperformed both serial implementations for N > 512, a
lower threshold than that on the Macbook Air. Additionally,
we can see that even with 16K particles, the K20 is still
not saturated in computational power. Otherwise, the rela-
tive performance of all implementations remained relatively
unchanged; as in the first benchmark, the optimized Java
outperformed Javascript in all cases.

Finally, we benchmark the performance of the individual
WebCL kernels used in our CrowdCL Thomson problem
implementation. The force kernel is an N-body computation
(3), the update kernel is a mapping operation (5), and the

512 1024 2048 4096 8192 16384
0

0.5

1

·108

Number of particles, N

In
te

ra
ct

io
ns

pe
r

se
co

nd

Javascript
Opt Java
WebCL

Fig. 3. On a desktop equipped with a NVIDIA Tesla K20, CrowdCL outper-
forms serial Javascript and optimized Java for N ≥ 512 and the performance
gap between serial and parallel implementations is larger compared to the
Macbook Air.

512 1024 2048 4096 8192
0

0.2

0.4

Number of particles, N

R
un

tim
e

(m
ill

is
ec

on
ds

)

Force
Update
Reduction

Fig. 4. On the Macbook Air, the performance of the three main kernels—
computing forces on the sphere, updating the positions of points on the sphere,
and performing a reduction across all points—in our Thomson problem solver
were comparable for small values of N . For larger values, the reduction
kernel had the lowest performance, while the N-body kernel had the highest
performance.

reduction kernel is a reduce operation (4). Each of these kernels
is executed once for each step in the optimization over all
N points on the sphere. Our results on the Macbook Air are
shown in Figure 4. For small values of N , the performance
of the three kernels is comparable. However, as N increases,
the N-body computation is the most efficient kernel, while the
reduction kernel achieves the lowest performance.

V. CONCLUSION

The WebCL KernelContext and CrowdCL volunteer com-
puting framework simplify the development of web-based
GPU applications as well as the distribution of computational
tasks across a network of users. The WebCL KernelContext
allows developers to rapidly create OpenCL applications using
Javascript by providing a PyCUDA-like API for launching
GPU computations. Building on the KernelContext, CrowdCL

is a framework for distributing applications that can be easily
embedded in any web page and aggregating the results of
clients. A CrowdCL implementation of the Thomson problem
significantly outperformed serial implementations in Javascript
and Java.

While the WebCL browser extension remains under ac-
tive development, our results show strong promise for cross-
platform parallel computation on the web. As support for GPUs
continues to improve across web browsers, we hope the ease
of use of development tools for web-based GPU computations
reflects the increasing viability of the browser as a platform
for parallel computation.

REFERENCES

[1] CrowdCL implementation, May 2013. Available: http://github.com/
tmacwill/crowdcl.

[2] WebCL KernelContext implementation, May 2013. Available: http://
github.com/tmacwill/webcl-kernelcontext.

[3] E. Aho, K. Kuusilinna, T. Aarnio, J. Pietiainen, and J. Nikara. Towards
real-time applications in mobile web browsers. In Embedded Systems
for Real-time Multimedia (ESTIMedia), 2012 IEEE 10th Symposium on,
pages 57–66, 2012.

[4] E. L. Altschuler, A. Perez-Garrido, and R. Stong. A novel symmetric
four dimensional polytope found using optimization strategies inspired
by thomson’s problem of charges on a sphere. 01 2006.

[5] D. Anderson. BOINC: a system for public-resource computing and
storage. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM
International Workshop on, pages 4–10, 2004.

[6] A. R. Bausch, M. J. Bowick, A. Cacciuto, A. D. Dinsmore, M. F. Hsu,
D. R. Nelson, M. G. Nikolaides, A. Travesset, and D. A. Weitz. Grain
boundary scars and spherical crystallography. Science, 299(5613):1716–
1718, 2003.

[7] A. Beberg, D. Ensign, G. Jayachandran, S. Khaliq, and V. Pande.
Folding@home: Lessons from eight years of volunteer distributed
computing. In Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–8, 2009.

[8] C. Cecka, A. Middleton, and M. Bowick. Thomson problem database
and applet, May 2013. Available: http://thomson.phy.syr.edu/.

[9] P. Delsarte, J. Goethals, and J. Seidel. Spherical codes and designs.
Geometriae Dedicata, 6(3):363–388, 1977.

[10] T. Erber and G. M. Hockney. Complex Systems: Equilibrium Configu-
rations of N Equal Charges on a Sphere (2 N 112), pages 495–594.
John Wiley & Sons, Inc., 2007.

[11] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with
mechanical turk. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pages 453–456, New York,
NY, USA, 2008. ACM.

[12] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.
PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time
code generation. Parallel Computing, 38(3):157 – 174, 2012.

[13] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley.
C60: Buckminsterfullerene. Nature, 318(6042):162–163, 11 1985.

[14] J. Lidmar, L. Mirny, and D. Nelson. Virus shapes and buckling
transitions in spherical shells. Phys Rev E Stat Nonlin Soft Matter
Phys, 68(5 Pt 1):051910, 2003.

[15] E. Rakhmanov, E. Saff, and Y. Zhou. Electrons on the sphere. SERIES
IN APPROXIMATIONS AND DECOMPOSITIONS, 5:293–310, 1994.

[16] J. Thomson. Xxiv. on the structure of the atom: an investigation of the
stability and periods of oscillation of a number of corpuscles arranged
at equal intervals around the circumference of a circle; with application
of the results to the theory of atomic structure. Philosophical Magazine
Series 6, 7(39):237–265, 1904.

http://github.com/tmacwill/crowdcl
http://github.com/tmacwill/crowdcl
http://github.com/tmacwill/webcl-kernelcontext
http://github.com/tmacwill/webcl-kernelcontext
http://thomson.phy.syr.edu/

	Introduction
	KernelContext
	KernelContext Core
	KernelContext Utilities

	CrowdCL
	CrowdCLient
	CrowdServer

	Results
	Benchmark – Thomson Problem
	Performance and Comparisons

	Conclusion
	References

